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J. Phys. A: Math. Gen. 16 (1983) L359-L363. Printed in Great Britain 

LETTER TO THE EDITOR 

On the critical exponent y for four common 
three-dimensional lattices 

J L Gammel and D C Powert 
Department of Physics, Saint Louis University, St Louis, Missouri 63 103, USA 

Received 12 May 1983 

Abstract. The rational approximation method is used to examine the critical exponent 
for the susceptibility in the S = Ising model on the face centred cubic (FCC), body centred 
cubic (BCC), simple cubic ( S C )  and diamond lattices. A variation of the method of critical 
point renormalisation is used to eliminate bias due to uncertainty in the location of the 
critical point. The results are in agreement with the renormalisation group and with recent 
series analysis of the BCC series. 

There has been a tremendous increase in recent years in efforts to calculate precise 
values of the critical exponents for the Ising model. The situation in 1979 was marked 
by small but disturbing discrepancies between estimates calculated by ‘traditional’ 
means, i.e. ratio and/or Pad& and those using the renormalisation group approaches. 
Regarding the exponent y which characterises the divergence of the reduced suscepti- 
bility xo,  Gaunt and Sykes (1979) presented convincing evidence that y - 1.250 for 
the four common three-dimensional lattices (FCC, BCC, sc and diamond). The 
renormalisation group estimate was considerably lower, y - 1.241 (Baker et a1 1978, 
Le Guillou and Zinn-Justin 1980). McKenzie (1979) presented an analysis of the 
FCC lattice which indicated a preference for the renormalisation group value, but her 
approach was to assume a value for y and consider the rates of convergence of other 
quantities, such as critical points and amplitudes. 

The dramatic extension and analysis of the BCC high temperature series (Nickel 
1981) and subsequent analyses of this series have provided estimates for y which are 
closer to, but usually slightly lower than, the renormalisation group. These recent 
estimates are y - 1.2385 (Chen et a1 1982 and references therein) with one exception 
(Gammel et a1 1983) y - 1.241. It has been assumed that, given additional series 
coefficients, the other lattices would provide estimates in agreement with the BCC 
results as a consequence of universality. 

This letter presents an analysis of the four three-dimensional lattices using the 
newly developed rational approximation method (Baume1 et a1 1982, Gammel et a1 
1983). The results indicate good agreement with the renormalisation group and with 
our previous results for the BCC lattice. 

The series analysed are derived from the high temperature series in the variable 
U = tanh K which are available elsewhere (McKenzie 1975 (FCC), Sykes et a1 1972 
and Nickel 1981 (BCC), Sykes et a1 1972 and Gaunt and Sykes 1979 (sc), Gaunt and 
Sykes 1973 (diamond)). Since the critical point of the Ising model on these lattices 
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is not known exactly, some method is required to eliminate any biases due to its 
location from entering the analysis. Gaunt and Sykes, and Nickel, used the unbiased 
ratio method, in which the critical point is estimated using a Neville type extrapolation. 
This is inaccurate because the use of an extrapolation of this type assumes that the 
critical point estimates are converging linearly with 1/N without accounting for 
higher-order corrections, In the presence of confluent singularities, which are believed 
to be present in this case, the ratio estimates of the critical points converge more 
nearly as 

PN = Q N + ~ / Q N  -pc+(Ao/N)[1 +(A1/NP)I (1) 
where a, is the coefficient of U' in the series; pc = l/uc, and 0 s p < 1 .  For finite values 
of N, the correction terms can be significant, considering the degree of precision for 
which one strives. 

To avoid this difficulty a different method, introduced by Sheludyak and 
Rabinovitch (1979), is used here. The method of critical point renormalisation allows 
the estimate of the difference between two exponents if series are available with the 
same critical point. That is, given series 

f(x) = 1 f'X" - ( x  - xJ0 and g ( x )  = g,x" - ( x  - x c ) r P  

h l ( X )  = E  ( f , / g , ) x "  - ( x  - l)-l-(=-? 

the series 

The two series used are the susceptibility, in the role of g ( x ) ,  and its logarithmic 
derivative, in the role of f(x). Since the logarithmic derivative has a simple pole at 
the critical point, the self-renormalised function h l ( x )  formed in the above manner 
diverges with exponent - (2-y) ,  allowing a direct estimation of y. Reversing the 
roles of the susceptibility and its logarithmic derivative produces a function which we 
define as h z ( x )  which diverges with exponent y.  It is likely that the functions h l ( x )  
and h 2 ( x )  contain confluent singularities. Unfortunately, the values of their sub- 
dominant exponents do not appear to be simply related to the values of the sub- 
dominant exponent of the susceptibility series. Therefore, to demonstrate the method, 
we analyse an exactly known case, the two-dimensional susceptibility. With h l ( x )  and 
h Z ( x )  defined, any of the series analysis techniques can be used to analyse them. We 
use the rational approximation method. 

The rational approximation method is based on the placement of orthogonal 
polynomials on the branch cuts, in the reciprocal plane, of the function being approxi- 
mated. To determine the location of the branch of h l ( x )  and h z ( x )  we analysed them 
using Dlog Pad6 approximants. In the case of the loose packed lattices (simple 
quadratic, honeycomb, sc, BCC and diamond) it appears that the antiferromagnetic 
point at o = -uc is transformed to the point x = -1, although no analytical proof of 
this has been found. In the case of the honeycomb lattice, branch points were also 
indicated at the points x = *iyhich we believe correspond to the well known interfer- 
ing singularities at v = *. /d3 (Domb 1974). Due to limitations in our computer 
code, these additional singularities prevented our analysing the honeycomb lattice. 
The rational approximation method, however, has worked well in situations similar 
to this one (Baume1 et a1 1982). For the remaining loose packed lattices, Tschebysheff 
polynomials were placed on the interval -1 s t s 0 (t = x - ' ) .  For the triangular and 
FCC lattices there is no apparent branch line on which to place the polynomials. It 
has proven effective in previous studies of the FCC specific heat to place the polynomials 
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at the origin of the reciprocal plane (the point at infinity in the normal plane). 
Therefore, the degenerate polynomials p , ( t )  = t" were used for the analysis of the 
series for the close packed lattices. The approximants were calculated for all lattices 
according to the formula 

(2) 
where HN is the Nth  term of the series for H ( x ) = p N ( x ) ( d / d x ) l n h i ( x ) ,  and GN 
represents -(2 - y )  in the case of hl(x)  and y in the case of h z ( x ) .  

The results of the analysis of h 2 ( x )  on the two-dimensional lattices are presented 
in figure 1. Convergence to the exact value y = 1.75 is rapid. The oscillations in the 
simple quadratic case are large, but are very regular and rapidly decaying. The 

GN = -HN/PN ( 1) 

I I I I ,  , , , , , , I  I I 1 
1/10 1/20 1/30 

11N 

Figure 1. Successive estimates for y against 1/N obtained using the rational approximation 
method for the triangular and simple quadratic lattices. 

estimates from the triangular lattice contain oscillations of longer period, but these 
are nearly decayed by N = 14, the last approximation available. The analysis of hl(x)  
for the two-dimensional lattices provides a sequence of approximants which is very 
smooth, but slowly converging. We believe that there are two reasons for this, the 
first being that the exponent -(2 - y )  = -0.25 is small. All known series analysis 
techniques converge slowly for such small exponents. It may be that other techniques, 
such as ratios, may be better suited to the analysis of h l ( x )  on the two-dimensional 
lattices, but we have not pursued this possibility. The second reason for the slow 
convergence is the likelihood that the subdominant exponent has a value in the range 
0 s p  < 1. Since we expect our estimates for GN to converge as 

G N  = Go + (B/NP) (3) 
such a value for p would dramatically slow convergence. Using the approximants 
obtained from h l ( x )  we estimate $ G p  si using the formula 

The three-dimensional results for the analysis of h l ( x )  are shown in figure 2. The 
BCC and FCC results are very nearly straight lines, while the sc displays slightly 
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Figure 2. Successive estimates for y against 1/N obtained from the rational approximation 
method for the three-dimensional lattices. m denotes FCC, 0 denotes sc, 0 denotes 
BCC and 0 denotes diamond. 
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oscillatory behaviour. The diamond lattice results are more erratic but generally are 
not inconsistent with the other lattices. We use a plot of 1/N because we estimate 
p - 0.9- 1.0 from the BCC and FCC curves. 

To investigate the issue of a common limit for the curves, we plot in figure 3 the 
differences between the approximants. That is, we calculate D = ( G N  GEcc) (the 
full circles) and D = (GLc -GEcc) (the open circles), and plot against 1/N. If a 
common limit exists, these curves should approach the origin. It appears that the 
FCC-BCC case is converging nicely to zero. The SC-BCC case apparently turns away 
from the origin at N - 1 2 ,  but may be turning back by N - 1 6  or 17. Further 
coefficients in the sc and BCC series may decide this issue. We conclude that upper 
limits of 

FCC - 

= I Y F C C - Y B C C ~ < ~ . ~ ~ ~ ~  D = I Y s c - Y B c c I < O . O O ~  

are consistent with our results. We provide no better estimate of yBCC than we have 
previously given, i.e. y = 1.241 f 0.001 (Gammel et a1 1983). 

Figure 3. Successive estimates for the differences between the susceptibility exponents 
for the FCC-BCC (full circles) and sc-Bcc (open circles) lattices, derived from the data 
plotted in figure 2. 
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